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Golay and Other Box Codes

G. Solomon!

The (24,12,8) extended Golay Code can be generated as a 6 x4 binary matrix
from the (15,11;3) BCH-Hamming Code, represented as a § x 3 matrix, by adding
a row and a column, both of odd or even parity. The odd-parity case provides
the additional 12th dimension. Furthermore, any three columns and five rows of
the 6 x4 Golay form a BCH-Hamming (15,11;3) Code. Similarly a (80,58;8) code
can be generated as a 10 x 8 binary matrix from the (63,57;,3) BCH-Hamming Code
represented as a 9 x 7 matrix by adding a row and a column both of odd and even
parity. Furthermore, any seven columns along with the top nine rows Is a BCH-
Hamming (63,57;3) Code.

A (80,40;16) 10 x8 matrix binary code with weight structure identical to the
extended (80,40;16) Quadratic Residue Code is generated from a (63,39;7) binary

cyclic code represented as a 9x 7 matrix, by adding a row and a column, both of
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odd or even parity.

l. Golay Code Properties

The (24,12;8) extended Golay Code possesses many
properties. Solomon and Sweet [1] showed that it can be
represented by a 6 x 4 binary matrix with equal row and
column sums. Certain permutations of the matrix that
keep the rows fixed give rise to at least three other boxes or
matrices with identical row/column sum properties. These
boxes can be used for “eyeball” decoding which avoids al-
gebraic procedures. Here new properties of the extended
Golay Code are further demonstrated.

A. Constructions

The (24,11;8) code in 6 x 4 matrix form is obtained
from the BCH-Hamming (15,11;3) Code by adjoining row
and column even parity. The BCH-Hamming Code here

1 Independent consultant to the Communications Systems Research
Section.

130

is expressed as a 5 x 3 matrix with entries in the (7, j)
positions, 0 < i < 4, 0 < j < 2 corresponding to the
coordinates 5i 4+ 35 mod 15 of the code.

Let A be the BCH-Hamming (15,11;3) Code. The
Mattson-Solomon (MS) polynomial for a code word a €
A = (a;;i=0...14) is given by

Pa(2) =Co+Tr Cz+ Tr D23+ E25 4+ E2210

where C,D € GF(16), £ € GF(4), Co € GF(2), and
Pa(B') = a; for # a primitive 15th root of unity. Tr
denotes the linear operator Trace in GF(16). Tra = a +
a?+a* +a®.

The parity check polynomial for the code is (z + 1) x
f1(2) fa(z) fs(2) where f;(z) is the irreducible polynomial
over GF(2) with §* a root.



The weight, w(a)mod4 for even-weight words
a(Cy = 0), is given by wmod4 = 2T (Pa(x)) where
T2(Pa(z)) = D® + D10 4+ E3 [2].

Now place the code words in 5x 3 matrices (b;;), 0 < i <
4, 0 < j <2 corresponding to their values 5i + 37 mod 15.
The ith coordinate is entered thusly:

0 5 10
3 8 13
6 11 1
9 14 4
12 2 7

The MS polynomial expressed in the 5 x 3 setting, in-
dexing each row by y in terms of the independent variable
z, becomes Tr Dy +Tr' (E'+Cy+C%y*)z; E' = E?. Note
again that for the rows, the trace is defined over GF(4) as
follows: Tr' a = a + @ for a € GF(4).

Form the sum over the rows to give a sixth row with
MS polynomial TY' E’z. Form the parity sum over the
columns to obtain a 6 x 1 column, which is of course
Tr Dy®; y® = y. The bottom row is indexed by y = 0,
and the parity column corresponds to z = 0.

This is what is needed to prove the following results.
Note that the coefficient of z is E' + Cy + (Cy)*. This is
the MS polynomial for a (5, 3;3) code indexed by y° = 1
over GF(4). Adding a sixth row, one obtains a (6,3;4)
code indexed by y® = y over GF(4) as the coefficient of
z. Note that the constant term in each row varies and
is a (5,4;2) binary code. It contributes the same values
to the fourth parity column. Thus if one started with
a BCH subcode of dimension 10 of even weight w with
wmodd4 = 2T's where Ty, = D% + D! 4+ E3, adjoining
the parity rows and columns adjoins row and column code
words whose weight modulo 4, w mod 4 = D® + D1° 4+ E3.
So the total new weight v’ = 0 mod 4.

This proves w’ > 8. For if one started with w = 4, one
has either £ =1 and D® + D® = 1, adding weight 4, or
E =0and D%+ D% =0, giving D® = 1, adding a column
of weight 4.

One could also show easily that v’ > 8 by noting that
the coefficient of z is now a (6,3;4) code over GF(4), hav-
ing adjoined an even parity row. Thus there are at least
four rows of weight 2 each. The addition of the even parity
column ensures w > 8 when the coefficient of £ = 0. The
new code words are of weights 8, 12, 16, and 24 in the

6 x 4 matrix code generated. Complementing these new
code words still gives words of weights 8, 12, and 16, which
takes care of the odd weight Hamming code words adding
up to dimension 11.

The 12th dimension of the constructed code is obtained
by adding odd parity row and column to the Hamming
words. Thus the additional row (first 3 columns) is given
by 1+ Tr Ez and the additional column (upper 5 rows)
is given by 1+ Tr Dy. The even weights are determined
by Ty = E3 4+ D% + D'°. Consider the even weights equal
to 4 and 6. If E3 = 0 and 1, respectively, then weights 3
and 1, respectively, have been added to the bottom row.
If D% + D'° = 0 and 1, respectively, then weights 1 and 3,
respectively, have been added to the fourth column. If
D =0, then a 5 has been added.

Consider the case of I'y = E3 4+ D®+ D% = 1 or w = 6.
Either £ # 0, D% = 1, and weight 6 is added, or £ = 0,
D® # 1, and weight 2 is added. For T3 = 0 or w = 4,
E # 0 and D3 # 1, so weight 4 is added, or £ = 0 and
D® =1 and again weight 4 is added. In either case, adding
odd parity row and column ensures that v’ = 0 mod 4 and
w' > 8.

This new code has weights 8, 12, 16, and 24. This is
sufficient to guarantee that this code is the extended Go-
lay Code by various uniqueness theorems in the literature.
However, there is an explicit construction by Solomon and
Sweet that does it.

B. The (24,12;8) Code Is the Golay Code

This formulation was first used by Solomon and Sweet
[1]. The code has words of weight w = 0 mod 4 and is
thus self-dual, has minimum distance 8, and contains the
all one vector. This is the Golay Code. In fact, the cor-
respondence between the coordinates of the cyclic code
generated by the parity check polynomial and its repre-
sentation as a 6 x 4 binary matrix is

0 2 1 3
4 12 7 10
9 22 6 11
16 15 8 19
20 21 18 13
17 oo 5 14

C. Encoding

Let a be a code word of length 24: a = (ap,a;,0a2,...,
as2,00). Label positions (0,1,2,...,22,00) generated by
the recursion shift register rule
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f@)=e2+e¥ 4+ " +2' + 23 +22 4241
Un412 = Gnp10 + Gny7 + Gnga

+ anq3+ angz + g1 + an

where n=10,1,2,3,...,22 and a, = E?ioai.

D. A Key Property

Theorem. Represent the Golay Code as a 6 x 4 binary
matrix and consider any 5 x 3 submatrix obtained by re-
moving one column and one row. This is a BCH-Hamming
(15,11;3) Code. There is one proof and one verification.

Proof: Consider the 6 x 4 matrix with the top row
deleted. Using the bottom parity check row and consid-
ering the first three columns, there is row a permuted
5 x 3 BCH-Hamming Code where the rows have been in-
terchanged.

Note that the coefficient of z is the (6,3;4) extended
Reed-Solomon (RS) Code over GF(4), which gives rise to
the (24, 6;8) portion of the code. The map y — (1 4+ ay+
a’y*) is a permutation of this code that interchanges the
top and bottom rows corresponding to y = % = 1 and
y=0. For a = 8° a root of 22 + = + 1, the second and
fiftth rows are interchanged and the third and fourth rows
are fixed. Here y ranges over the values y% = y.

The remaining five dimensions, which are a function of
Cp and D in the BCH-Hamming Code, are easily seen to be
manipulated so the weights stay the same. Since the code
is clearly invariant under cyclic row cyclic permutations,
this takes care of all subcodes with the first three columns
fixed.

Now interchange the first column with the fourth right-
most parity column and the second with the third to obtain
a BCH-Hamming Code still like the above in the top five
rows. This interchange of columns is given by z — z + 1.

This map takes the row indexed by y, Tr Dy+T¢ (E'+
Cy + (Cy)?)z, into a permuted row indexed by y, where
D € GF(16) has been augmented: Tr’ (E'+Cy+(Cy)*)+
Tr Dy+Tr' (E'+ Cy+ (Cy)*)z. There clearly exists a D’
such that D' = Tr' (E'+Cy+(Cy)*)+Tr Dy for all values
of y. Now clearly every three columns that occurred in
the leftmost 5 x 3 matrix now occur in the newly formed
5 x 3 matrix. As the code is invariant under cyclic column
permutation, the proof is complete. a
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Verification: Postconjecture and preproof, a com-
puter verification was performed by F. Pollara; this veri-
fication generated the identical weight distributions of the
Hamming Code for each relevant permutation.

Il. Extension of Results to (63,57;3)
BCH-Hamming Code

Starting with the BCH-Hamming Code of length 63 in
its 9 x 7 setting and using the MS polynomials for codes of
lengths 63, 9, and 7, one obtains a 10 x 8 code of distance
8.

A. MS Polynomial for the BCH-Hamming
Code in a 9 x 7 Setting

Let fi(z) = 26+ 241 be the primitive polynomial with
3 as a root. Then fi(z) is the irreducible polynomial with
coefficients in GF(2) with 3* as a root.

The BCH-Hamming Code in its MS polynomial form is
written as

P(z) = CO‘*’ZTr Cizt +ZT"I Cjzd + Coy 22 4 C3, 2%

where C; € GF(64); i = 1,3,5,7,11,13,15,23; C; €
GF(8); 1 =9,27; and

TY a=a+a?+a*; a€ GF(8)

Let z € GF(64) be a primitive root of GF(64). Express
z = zy where

z=p0% 0<i<6 y=p8",0<j<8
then
Tr Cz = Tr Czy = Tr' [Cy+ (Cy)®]z
Tr Caz3 = Tr' [Chy® + C4y%)2"
Ch = C?

Replacing the letter by its primed letter to indicate a miss-
ing appropriate power,



Tr Cs2° = TY' (Ciy® + C8y")z®

Tr C727 = TrChyTr Cy2° = Tt Chzx
Tr Cpy 2™ = Tr' (C)yt + C5y®)z
Tr Ci32'% = T’ (Ciay® + Cay°)x®
Tr Ci52'° = TY (Ci5y° + C13y°)z
Tr Co32® = Tr' (Chay® + CJy" )z
Tr Cy72% = Tt Cor2®

021221 = 021y21

Recall that the Golay Code can be viewed in the
MS polynomial formulation for lengths 6 or 4 as made
up of components that are themselves RS Codes. Simi-
larly express the Hamming Code here in MS polynomials
of lengths 9 or 7. Recall that a binary codeword of length
7 has an MS polynomial of the form

P(z)=Co + TY (Cz + Dz%)
TI'C=C + C* + C* CeGF(8)
Write the BCH-Hamming Code in all 57 dimensions as
Co + Tr Cry" + Cpyy®! + CHy™
+ Tt (Co + Cy+ C3%y® + C11y* + C3y°
+Clsy° + C13y° + Cogy® + C3y ")z
+ Tr' (Cor + C33° + C119° + Cy?
+CPyY" + Cray® + Clay®)a®

where C; € GF(64), i« = 1,3,5,7,11,13,15,23; C; €
GF(8); 1=9,27.

Note that the coefficient of z in the above expression is

a (9,9;1) code over GF(8), the coefficient of r%isa (9,7,3)

RS code over GF(8). The values Co + Tr Chy” + Chy%! +
C!2y*? taken over y form a (9,9;1) binary code. The min-
imum weight of this code is clearly 3. If the coefficient of
z% is zero, then the minimum weight is given by a weight
one word (coefficient of z) in the (9,9,1) code (giving rise
to a weight 4 word) complemented by a value of Cp, which
is 1 at that y position. If the coefficient of z¢ is nonzero,
one again has a minimum weight 3 word.

Now extend the 9 x 7 matrix to 10 x 8 by adjoining
even parity rows and columns. The 10th parity row is
clearly the code word in MS form Cy + Tt (Cyz + C’27r6).
The coefficients Cy + Tr Chy” + C4,y%! + CH2y*? in the
row MS polynomials for y!® = y now form a (10,9;2)
binary code. The coefficient of z is also a (10,9;2) code
over GF(8). The coefficient of z° is a (10,7;4) code over
GF(8). Adding the even parity column guarantees that
the minimum weight w of the expanded code w = 8.

Thus the BCH-Hamming Code extends to a (80,57;8)
code. Finally, if the 10th row and 8th column are to be
of odd parity, the minimum weight still is 8. It is obvious
that the weight does not decrease this way. Consider words
of weight w < 7 and try placing them in a 9 x 7 setting.
Clearly 10 — w columns are at least zero and odd parity
will certainly increase the weight this much.

B. BCH-Hamming Submatrices of the 10 x 8 Code

To show that every 9 x 7 submatrix of the 9 x 8 top
portion of the matrix is also a Hamming Code, follow the
technique used for the Golay Code. The map ¢ — z +
1 does an interchange of columns and replaces the first
with the even parity column. A similar argument invoking
cyclicity of the columns proves that the Hamming Code
appears in every top 9 x 7 submatrix.

lll. Quadratic Residue Code Properties (Box
Codes)

The (63,39;7) binary cyclic code when extended by
adding a row/column of odd and even parity has the
weight structure of the extended (80,40;16) Quadratic
Residue (QR) Code but is not isomorphic to it.

A. Constructions

The (80,39;16) in 10 x 8 matrix form is obtained from
the (63,39;7) cyclic code by adjoining row and column even
parity. The cyclic code here is expressed as a 9 x 7 matrix
with entries in the (7, ) positions, 0 < <6, 0<j <8
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corresponding to the coordinates 97 + 7j mod 63 of the
code.

Let A be the (63,39;7) cyclic code. The MS polynomial
for a code word a € A = (a;; 1 =0...62) is given by

P(z) = CO+ZTr Cizt + Zrﬁ' Cjzj + Cp1 2! +C221242

where C; € GF(64); ¢+ = 1,3,5,7,13; C; € GF(8); j =
9,27; and

T a=a+a®+a* a€ GF(8)
Let z € GF(64) be a primitive root of GF(64). Express

2z = ry where

z=p" 0<i<6 y=p",0<5<8
then

Tr Cz = Tr Czy = Tr' [Cy + (Cy)®]=z
Tr Cs2° = TY [Chy® + C43y%]e®
Cy=C3

Replacing the letter by its prired letter to indicate a miss-
Ing appropriate power,

Tr Csz° = Tt (Cly? + CBy")z"
Tr C7z" = Tr ChyTr Cy2° = TY Chz
Tr C132"° = Tt (Ciay* + Cisy°)2®
Tr Cor2?" = Tt Cpr28
Cnz?t = Cny?

Write the cyclic code in all 39 dimensions as
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Co+ Tr Chy" + Chyy®' + C2y™
+ Tt (Cy+ Cy+ Co®) + Tr' (Cor + Chy® + CL
+Csy” + C2yY" + Cray* + Chy®)a®

where C; € GF(64); 1 = 1,3,5,7,13; C; € GF(8); and
J =9,27. The generator polynomial for the code is

f1(2) fa(2) f5(2) fis(z)

where f;(z) is the irreducible polynomial over GF(2) with
B a root.

The weight, w(a) mod 4 for even weight words a(Cy =
0) is given by w mod 4 = 2I'3(Pa(z)) where a(Pa(z)) =
2 CiCi =T (CF + CoCsa + C3)) [2].

Now place the code words in 9 x 7 matrices (b;;),
0 <1 <6, 0 < s < 8 corresponding to their values
9i4 75 mod 63. Note that the coefficient of z in the above
expression is a (9,3;7) code over GF(8), and the coeffi-
cient of z° is a (9,7;3) RS Code over GF(8). The values
Co+Tr Chy"+C4 y? + C2y*? taken over y form a (9,9;1)
binary code. The minimum weight of this code is clearly
7. If the coefficient of = and z is zero, then the minimum
weight is given by a weight one word (the coefficient of
z) in the (9,9,1) code giving rise to a weight 7 word. If
the coefficient of 2% is nonzero, again there is a minimum
weight 12 word, but, complemented by the constants, this
can give rise to weight 9 at least.

Now extend the 9 x 7 matrix into a 10 x 8 matrix by
adjoining even parity rows and columns. The 10th parity
row is clearly the code word in MS form Cyp + Tt (Coz +
C372°). The coefficients Co+Tr Chy” +Chy* +C2y* in
the row MS polynomials for y!% = y now form a (10, 9;2)
binary code. The coefficient of « is also a (10,3;8) code
over GF(8). The coefficient of z° is a (10, 7;4) code over
GF(8). Adding the even parity column guarantees that
the minimum weight w of the expanded code w equals 16.

Note that in the 10th row, I'; = Tr' (CoCs4). In the
eighth column, Ty = Tr' (C§ + C3;). Thus coming from
the length 63 cyclic code with I'y = Tr' (C$+CyCsq+C3))
by adjoining a row and column of equal even parity, one
has obtained a code with weights equal to 0 mod 4.

The 40th dimension of the constructed code is obtained
by adding odd parity row and column to the code words



and keeps the minimum weight and I's property. This new
code has weights 16, 20, 24, 28, 32, 36, 40, 48, 56, and 64
and is self-dual. This is sufficient to guarantee that this
code has the weight structure of the (80,40;16) extended
QR Code [3].

B. Decoding

Place the code in its 10 x 8 box and compute row and
column parities. Decide whether the code word is of even
or odd row/column parity. If in doubt, assume first even
and then try odd. Where a row is determined to have
an odd number of errors, mark that row as an erasure.
Otherwise assume an even number of errors in that row.
To correct seven errors, there are at least three rows that
must be correct, if seven row erasures are assumed. The
coefficient of z is a (10,3;8) code, so one can extract that

and generate a correct version. This leaves ten rows that
are assumed to be BCH-Hamming Codes.

Only seven of these must be corrected to generate the
entire word. Thus, if there is more than one error in each
of four rows, but an odd number in the other three, then,
with trial and error, 4 + 3 x 3 = 13 errors of a particular
pattern can be corrected. If the 7-8-9 error patterns are
such that three rows are clean, and at least four have single
errors, then one can generate the (10,3;8) code over GF'(8)
the coefficient of z and the (10,7;4) code over GF(8) the
coefficient of . The rest emerges easily although this
may require assuming first even and then odd parity of
the row/column received code words. In general for error
patterns of four or less, the row/column parity will be clear
and the decoding simplified. In the event of even error
patterns in the rows, one will have to decode the (10,3;8)
code with some kind of modified RS decoding.
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